
Object-oriented
Design Principles

CSC207 Summer 2017

OO Design Principles

First five basic principles of object-oriented design.

SOLID

SOLID

S Single responsibility principle

O Open/closed principle

L Liskov substitution principle

I Interface segregation principle

D Dependency inversion principle

S: Single Responsibility Principle

• every class should have a single responsibility

• responsibility should be entirely encapsulated by the class

• all class services should be should be aligned with that
responsibility

Why?

• makes the class more robust

• makes the class more reusable

 Note the terminology clash here: in CRC cards
“responsibility” is what we call “service” here.

O: Open/Closed Principle (simplified)

• Software entities (classes, modules, functions, etc.) should
be open for extension, but closed for modification.

• Add new features not by modifying the original class, but
rather by extending it and adding new behaviours.

• The derived class may or may not have the same interface as
the original class.

O: Open/Closed Principle (simplified)

 Example:

 area calculates the area of all Rectangles in the input.

 What if we need to add more shapes?

O: Open/Closed Principle (simplified)

 What if we need to add even more shapes?

O: Open/Closed Principle (simplified)

With this design, we can add any number of shapes (open
for extension) and we don't need to re-write the
AreaCalculator class (closed for modification).

L: Liskov Substitution Principle (simplified)

• If S is a subtype of T, then objects of type S may be
substituted for objects of type T, without altering any of the
desired properties of the program.

• “S is a subtype of T”?

 In Java, S is a child class of T, or S implements interface
T.

• For example, if C is a child class of P, then we should be able
to substitute C for P in our code without breaking it.

L: Liskov Substitution Principle (simplified)

 A classic example of breaking this principle:

L: Liskov Substitution Principle (simplified)

• In OO programming and design, unlike in math, it is not the
case that a Square is a Rectangle!

• This is because a Rectangle has more behaviours than a
Square, not less.

• The LSP is related to the Open/Close principle: the sub
classes should only extend (add behaviours), not modify or
remove them.

I: Interface Segregation Principle

• No client should be forced to depend on methods it doesn't
use.

• Better to have lots of small, specific interfaces than fewer
larger ones.

• Easier to extend and modify the design.

D: Dependency inversion principle

• When building a complex system, we may be tempted to
define the “low-level” classes first and then build the “higher-
level” classes that use the low-level classes directly.

• But this approach is not flexible! What if we need to replace
a low-level class? The logic in the high-level class will need to
be replaced.

• To avoid such problems, we can introduce an abstraction
layer between low-level classes and high-level classes.

D: Dependency inversion principle

To make Manager work with SuperWorker, we would need
to rewrite the code in Manager.

D: Dependency inversion principle

Now Manager does not know anything about Worker, nor
about SuperWorker. It can work with any IWorker, the
code in Manager does not need rewriting.

SOLID

Many Design Patterns follow the SOLID principles of
object-oriented Design.

Can you identify any of these principles in any of the
design patterns we saw?

D: Dependency inversion principle

• Two aspects:

• High-level modules should not depend on low-level
modules. Both should depend on abstractions.

• Abstractions should not depend upon details. Details
should depend upon abstractions.

• When building a complex system, we may be tempted to
define the “low-level” classes first and then build the “higher-
level” classes that use the low-level classes directly.

• But this approach is not flexible! What if we need to replace
a low-level class? The logic in the high-level class will need to
be replaced.

• To avoid such problems, we can introduce an abstraction
layer between low-level classes and high-level classes.

