
while Loops

CSC121
Mark Kazakevich

while loops
● A while loop is a statement that allows us to repeat code

when we don’t know the specific amount of times we want
to go through the loop

● The number of times it repeats depends on a truth
condition, which must be true for the loop to continue

● The variables involved in the condition can change in the
loop until it is false and we leave the loop

● Let’s take a closer look

while loop Format
while (condition) {

loop body
}

This block is
considered one
while loop

Let’s talk about what these words all mean

while loop Format
while (condition) {

loop body
}

while
Indicates that this is a while loop statement

while loop Format
while (condition) {

loop body
}

condition
condition is an expression that evaluates to a
logical value.
We continue executing the loop as long as condition is true.
“While condition is true, keep repeating the loop.”

while loop Format
while (condition) {

loop body
}

loop body
● These lines of code (which are indented in the for

loop), will repeat as long as condition is true.
● Unlike a for loop, there is no variable that changes at

every iteration of the loop.
● But, we can change variables involved in the condition

Let’s see an example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}

Let’s see an example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}

while
Indicates that this is a while loop statement

Let’s see an example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}

n > 0
We check if n > 0 evaluates to TRUE.
If it does, then we run the loop body.
Notice that n was defined before the loop.

Let’s see an example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}

In the loop body, we output the value of n to the
console. Notice how we also decrement the value
of n by 1. By subtracting n by 1, we are changing a
variable used in the while loop condition.

Reminder:
“\n” is a string with the
newline character. It has
nothing to do with the
variable n.

Let’s see an example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}

In the loop body, we output the value of n to the
console. Notice how we also decrement the value
of n by 1. By subtracting n by 1, we are changing a
variable used in the while loop condition.

Increment: Increase
the value of numeric
variable
Decrement: Decrease
the value of numeric
variable

Running the example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}

1st iteration of loop:
Current value of n: 3
n > 0 is TRUE
So we run the loop body

3
R Console output after
running loop body:

notice we decrement n by 1 at
the end of the loop

Running the example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}

2nd iteration of loop:
Current value of n: 2
n > 0 is TRUE
So we run the loop body

3
2R Console output after

running loop body:

Running the example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}

3rd iteration of loop:
Current value of n: 1
n > 0 is TRUE
So we run the loop body

3
2
1

R Console output after
running loop body:

Running the example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}

4th iteration of loop:
Current value of n: 0
n > 0 is FALSE
The while condition is no
longer true - we do not run
the loop body
3
2
1

R Console output after
running loop body:

Running the example
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n - 1

}
.
program continues
.
.

The while condition is no
longer true.
We’re done! We now
move on to the statements
after the for loop
3
2
1

Something to be careful about
n <- 3
while (n > 0) {

cat(n)
cat(“\n”)
n <- n + 1

}

● Be careful with what what
you do to variables
involved in your while
condition.

● Assigning the wrong thing
can lead to an incorrect
number of iterations, or..

● Infinite loops

If we always add 1, we will never
fail the condition, so the loop will
keep going indefinitely

Examples in RStudio

