
Tips for Writing Good Code

CSC121
Mark Kazakevich

Let’s talk about how to write better code
● We’ve learned a lot about how to write code in R

● As you work through the course material and write your
own code, you may develop bad habits and misconceptions.

● That’s ok!
○ …..as long as you fix them :)

● Let’s go through a few issues I’ve been seeing as I look at
your code

Function names in function bodies are bad
● Function names should not appear in function bodies as a

variable

● I see a lot of people returning the name of the function they
are using:

FunctionName <- function(argument) {
.
.
return(FunctionName)

}

Rule: The name of the
function should never appear
as a variable in the function
body. Not in the return
statement, not as an
intermediate variable, not
anywhere in the function body

Wrong!

Calling functions in other functions
● Functions can be used in other functions only by *calling* them

Function1 <- function(argument) {
 .

value <- 1
return(value)

}

Function2 <- function(argument) {
 .

.
value <- Function1 * 7
return(value)

} Wrong!

Rule: You cannot use
the name of a function in
another function unless
you are
calling that function.
How do you call the
function?...

Calling functions in other functions
● Functions can be used in other functions only by *calling* them

Function1 <- function(argument) {
 .

value <- 1
return(value)

}

Function2 <- function(argument) {
 .

.
value <- Function1(4) * 7
return(value)

}

Correct.
We called the
function with an
argument: 4

Variable names in one function don’t have
any connection to those of another function
Function1 <- function(argument) {
 .

value <- 1
return(value)

}

Function2 <- function(argument) {
 .

.
value <- Function1(4) * 7
return value

}

These two variables are both
called value.
BUT...they are in different
functions.
So they will never know about
each other.

Variables inside functions only
live in their own environment.

Let’s see this in RStudio

Indenting
● Functions and if statements must be properly indented for good

style and readability
FunctionName <- function(argument) {
 # Returns...

if (argument > 5) {
argumentToSquare <- argument + 7
squaredArgument <- argumentToSquare^2

}
.
.

}

If-statement indented

Function Indented

Indenting
● Make sure any open curly brackets are closed and indented properly
● Line up the closing brackets with the function name or if statement

FunctionName <- function(argument) {
 # Returns...

if (argument > 5) {
argumentToSquare <- argument + 7
squaredArgument <- argumentToSquare^2

}
.
.

}

If-statement bracket closed

Function bracket closed

Same for else ifs and else, and nested ifs
if (condition1) {

..statements1..
} else if (condition2) {

if (condition3) {
...

}
}
else {

..statementsN
}

Nested if-statement is
indented, and the closing
bracket is also indented

Redundant intermediate variables
● Do not assign variables another variable whose value you haven’t

changed.
FunctionName <- function(argument) {
 # Returns...

value <- argument + 3
valueToReturn <- value

return(valueToReturn)
}

Wrong!
Redundant variable.
There is no need to
re-assign value to
another variable if
you haven’t changed
it

Redundant intermediate variables
● Do not assign variables another variable whose value you haven’t

changed.

FunctionName <- function(argument) {
 # Returns...

value <- argument + 3

return(value)
}

Just use value.

Helping yourself write correct code
● Let’s say you wanted to write a function.

● Often when you are learning how to code, you want to just start
typing immediately, and you get lost as to what you need to do

● This often leads to:
○ Hours of trying to figure out what you have to do to write a

function
○ Functions that makes little sense when you read them
○ A function that works, but you don’t understand why it works

Helping yourself write correct code
● What are some good ways to start writing your function?

● First, use # comments to explain to yourself in English what your
code has to do
○ This is called writing Pseudocode

● By writing out in English what your code has to do, you make it
easier to understand what code you have to write.

● If you don’t understand your pseudocode, don’t start coding!
○ This usually means you need to think more about how you

would write the function.

Pseudocode Example
VectorAdding <- function(v) {

Returns a vector of all elements in v which are
less than 4, with all elements increased by 2

}

Pseudocode Example
VectorAdding <- function(v) {

Returns a vector of all elements in v which are
less than 4, with all elements increased by 2

Need to get a vector of all elements less than 4

Need to increase all elements by 2

} Add pseudocode
comments to explain what
your function should do

Pseudocode Example
VectorAdding <- function(v) {

Returns a vector of all elements in v which are
less than 4, with all elements increased by 2

Need to get a vector of all elements less than 4
resultVector <- v[v < 4]

Need to increase all elements by 2
resultVector <- resultVector + 2
return(resultVector)

}

Write the code after you
understand what you have to do

Print Statements
● Just like we used print statements to see the result of our

function in the console, we can use them to check the value of
intermediate variables as we run our functions

● Use print(variableName) to see the value of the variable in the
console.

● Use them to make sure your code is doing the right thing

● Don’t forget to delete your print statements before you submit
your code. You will lose marks otherwise!

Print Statements
VectorAdding <- function(v) {

Need to get a vector of all elements less than 4
resultVector <- v[v < 4]
print(resultVector)

Need to increase all elements by 2
resultVector <- resultVector + 2
print(resultVector)
return(resultVector)

}

Check in the console to make
sure you got back the values you
wanted

Examples in RStudio

