
Writing Function Definitions

CSC121
Mark Kazakevich

Last time
● We learned about R Scripts and environment variables

● We talked about the flow of an R program, and how the state
of the environment changes as the program runs

● We introduced functions definitions and wrote a function

Today
● We’re going to look more closely at the steps we took to

write a function

● We’ll write one step-by-step, and talk about style guidelines
when writing functions

● We’ll talk about test cases for our functions and calling our
functions in an R Script

Step 1: Recognizing when to define a
function

● Usually, we write functions because we want to get rid of
repeated code

● Let’s revisit our sin function in RStudio

● Recognizing when it’s a good idea to write a function:
○ Repeated code
○ Doing a complex command over and over again with

different data (like converting from degrees to radians!)

Step 2: Defining the function

● Once we realize that we should define a function, the next step
is to actually write it!

● A lot of what we do when defining a function involves using a
set of style guidelines

● We’ll look at the style guidelines for this course as we write
our function definition

We need to get to something like this

FunctionName <- function(arguments) {

function body

}

Step 2: Defining the function

● First off, we always write our functions in a separate R script
file than where we run them
○ This helps separate our code so that we can source our

functions into the environment, without also having to run
them

○ Also keeps the code cleaner

Step 2: Defining the function

● Then, we give it a good name

● Make sure the name helps someone reading your code
understand what it might do

● Function1 doesn’t really tell us what it does…

● SinDegrees tells us something about the function, and
people can deduce some meaning from this name

Step 2: Defining the function

● GiveTheSinOfTheAngleInDegrees
○ Too long!
○ You don’t need to give all the information in the name, but

give enough to make it useful to the reader

● Style
○ All words in the name should be capitalized

Step 2: Defining the function

● Next, we need to figure out what arguments the function
needs
○ What data is this function working with/manipulating?
○ What would someone need to provide this function for it

to work properly?

● For our SinDegrees function, we obviously need to provide
an angle, or the function just can’t work!

Step 2: Defining the function

● Give the arguments a good name
○ Again, someone reading it needs to derive meaning from it

● argument1, x, a1
○ These names don’t really help…

● angleInDegrees
○ Tells us the argument is some type of angle
○ Good!

Step 2: Defining the function

● We now have the beginning (header) of our function:

 SinDegrees <- function(angleInDegrees)

● Let’s continue

Step 2: Defining the function

● We now open up our curly brackets:

SinDegrees <- function(angleInDegrees) {

}

Step 2: Defining the function

● We now open up our curly brackets:

SinDegrees <- function(angleInDegrees) {
Everything inside the curly
brackets is indented with a tab
space.

}
Indented space

Docstrings

● Every function should have a docstring comment that explains
what the function does.

● It should NOT explain *how* the function works.

● Use the docstring to explain what the point of the function is,
and what it returns. Use good spelling and grammar!

● Should usually start the docstring with the word ‘Returns’

Docstring for
SinDegrees(angleInDegrees)

Good Example (tells us what the function does):

Returns the sine of 'angleInDegrees', which is
an angle specified in degrees.

Bad Example (says too much about *how* it works):

Calculates the sine of 'angleInDegrees', by
first converting from degrees to radians, and
then using the original sin function to give us
the sine of the angle.

Preconditions on arguments
● Preconditions tell us what values it makes sense for the

arguments to have

● If we had a function for dividing two numbers: p / q
○ A precondition on q would be that q is not equal to 0

● We can add the precondition in the docstring:
○ # Precondition: q is not equal to 0

● For SinDegrees, the angle can be 0 and negative, so no
preconditions required.

The Function Body
SinDegrees <- function(angleInDegrees) {

Returns the sine of 'angleInDegrees',
which is an angle specified in degrees.

function body

}

This is where the work gets
done!

Function Body
● Contains the ‘algorithm’ for making the function work

○ The steps that need to be taken to give you the correct
return value

● You must think about what needs to be done for the function
you’re writing
○ “I have to convert from degrees to radians, because R’s

built-in sin function only takes radians as an argument”
○ “Once I have a value for the angle in radians, I will call the

original sin function with that value.”

Function Body
● Return statement

○ At the end of the function, you put the return value you
want your function to evaluate to in a return statement

return(valueGoesHere)

● Put a newline after the return statement in the function body

Function Body
● Intermediate variables/values

○ Even if you can write out the return value in one line and
put it in the return statement, you shouldn’t

Bad Example (entire expression in the return statement):
SinDegrees <- function(angleInDegrees) {

Returns the sine of 'angleInDegrees',
which is an angle specified in degrees.

return(sin(angleInDegrees * (pi / 180)))

}

Use intermediate variables to help understand
the logic behind what you’re doing

Good Example (intermediate variables explain your logic):
SinDegrees <- function(angleInDegrees) {

Returns the sine of 'angleInDegrees',
which is an angle specified in degrees.

angleInRadians <- angleInDegrees * (pi / 180)
sinOfAngle <- sin(angleInRadians)

return(sinOfAngle)

}

Clean return statement

We have a function!
SinDegrees <- function(angleInDegrees) {

Returns the sine of 'angleInDegrees',
which is an angle specified in degrees.

angleInRadians <- angleInDegrees * (pi / 180)
sinOfAngle <- sin(angleInRadians)

return(sinOfAngle)

}

Let’s put it in an R Script

Step 3: Create Test Cases
● We have a function...great!

● But now we have to make sure it works

● To do that, we will create a table of test cases that we can
run on our function
○ What you ‘expect’ the function to return for each

argument value

● Good to test ‘edge cases’ - cases that could cause problems
○ Usually values like 0, 1, really high/low numbers

Step 3: Create Test Cases
Test cases for SinDegrees(angleInDegrees)

Value of argument
angleInDegrees

Expected
Return Value

90 1

270 -1

173 0.1218693

0 0

Step 4: Run your function on the test cases
● Run your functions in a separate R Script

● Use ‘print’ statements to see the output in the console
○ print(SinDegrees(90))

● Check against your test cases to make sure your function
works

● If not, revise your function and try to find out where you went
wrong

Let’s run our test cases in
RStudio

