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Outline

MDP review

Reward shaping
To provide guidance, policies can be learned on an
MDP with a modified reward function, and then used
on the original MDP (with varying results).

Potential-based reward shaping
To ensure that good policies for a modified reward
function are also good for the original, it suffices to
base the rewards on a potential function.

Experiments
Some potential-based shaping functions are
evaluated.
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MDP review

Definition

A Markov decision process (MDP) is a tuple
M = 〈S ,A,T , γ,R〉 where

I S is a finite set of states,

I A = {a1, . . . , ak} is a set of actions,

I T = {Psa : s ∈ S , a ∈ A} specifies transition probabilities;
Psa(s ′) is the probability of transitioning from s to s ′ with
action a,

I γ is the discount factor, and

I R : S × A× S → R is the reward function.

Definition

A policy over a set of states S is a function π : S → A.
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MDP review

Definition

Given a policy π and MDP M = 〈S ,A,T , γ,R〉, the value
function V π

M is defined by

V π
M(s) = E[R1 + γR2 + γ2R3 + . . . ;π, s]

where Ri is the reward received on the ith step of following π,
starting from s.

Definition

The Q-function is

Qπ
M(s, a) = Es′∼Psa [R(s, a, s ′) + γV π

M(s ′)]
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MDP review

I The optimal value function is V ∗M(s) = supπ V
π
M(s).

I The optimal Q-function is Q∗M(s, a) = supπ Q
π
M(s, a).

I The optimal policy is π∗M(s) = argmaxa∈AQ
∗
M(s, a).
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Regularity conditions for undiscounted MDPs

When the discount γ is 1, we’ll assume:
I There is an absorbing state s0 s.t.

I s0 can never be left once entered, and
I from s0, no further rewards can be gained.

I The transition probabilities T are proper: starting from any
state, following any policy will lead to s0 with probability 1.
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Modifying the reward function to provide guidance

To learn a policy for an MDP

M = 〈S ,A,T , γ,R〉

we could instead run our reinforcement learning algorithm on a
transformed MDP

M ′ = 〈S ,A,T , γ,R ′〉

where
R ′ = R + F

is the transformed reward function, and

F : S × A× S → R

is the shaping reward function.
When will an optimal (or good) policy for M ′ also be optimal (or
good) for M?
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Difficulties in reward shaping

Consider this (undiscounted) problem:
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How can we modify the reward function to make the agent more
quickly learn to move rightward to the goal?

What if we give extra
reward for going in the right direction?
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Problem: it’s now better for the bicycle to try to go in a circle
than to go the goal.
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This problem isn’t just a contrived artificial example.

Consider this description of work on a (more complicated) bicycle
driving domain:

In our first experiments we rewarded the agent for driving
towards the goal but did not punish it for driving away from it.
Consequently the agent drove in circles with a radius of 20–50
meters around the starting point. Such behavior was actually
rewarded by the reinforcement function [...]

— Randløv and Alstrøm (1998)
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Idea: use a potential function
Associate a potential value Φ(s) to each state s, and add to the
reward of a transition the difference of potentials.
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Definition

A shaping reward function F : S × A× S → R is potential-based
if there exists Φ : S → R s.t.

F (s, a, s ′) = γΦ(s ′)− Φ(s)

for all s 6= s0, a, s
′.

Theorem

If F is a potential-based shaping function, then every optimal
policy in M ′ = 〈S ,A,T , γ,R + F 〉 will also be an optimal policy in
M = 〈S ,A,T , γ,R〉 (and vice versa).
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Theorem

If F is a potential-based shaping function, then every optimal
policy in M ′ = 〈S ,A,T , γ,R + F 〉 will also be an optimal policy in
M = 〈S ,A,T , γ,R〉 (and vice versa).

Q∗M satisfies the Bellman equation:

Q∗M(s, a) = Es′∼Psa

[
R(s, a, s ′) + γmax

a′∈A
Q∗M(s ′, a′)

]
Let’s subtract Φ(s) from both sides:

Q∗M (s, a)− Φ(s) = Es′∼Psa

[
R(s, a, s′) + γ max

a′∈A
Q∗M (s′, a′)

]
− Φ(s)

= Es′∼Psa

[
R(s, a, s′) + γΦ(s′) + γ max

a′∈A
(Q∗M (s′, a′)− Φ(s′))

]
− Φ(s)

= Es′∼Psa

[
R(s, a, s′) + γΦ(s′)− Φ(s) + γ max

a′∈A

(
Q∗M (s′, a′)− Φ(s′)

)]
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Theorem

If F is a potential-based shaping function, then every optimal
policy in M ′ = 〈S ,A,T , γ,R + F 〉 will also be an optimal policy in
M = 〈S ,A,T , γ,R〉 (and vice versa).
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Theorem

If F is a potential-based shaping function, then every optimal
policy in M ′ = 〈S ,A,T , γ,R + F 〉 will also be an optimal policy in
M = 〈S ,A,T , γ,R〉 (and vice versa).

So Q∗M(s, a)− Φ(s) is equal to

Es′∼Psa

[
R(s, a, s ′) + γΦ(s ′)− Φ(s) + γmax

a′∈A

(
Q∗M(s ′, a′)− Φ(s ′)

)]
.

Let
Q̂M′(s, a) := Q∗M(s, a)− Φ(s).

and recall that
F (s, a, s ′) = γΦ(s ′)− Φ(s).

Therefore,

Q̂M′(s, a) = Es′∼Psa

[
R(s, a, s ′) + F (s, a, s ′) + γmax

a′∈A

(
Q̂M′(s

′, a′)
)]

= Es′∼Psa

[
R ′(s, a, s ′) + γmax

a′∈A

(
Q̂M′(s

′, a′)
)]
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Theorem

If F is a potential-based shaping function, then every optimal
policy in M ′ = 〈S ,A,T , γ,R + F 〉 will also be an optimal policy in
M = 〈S ,A,T , γ,R〉 (and vice versa).

Q̂M′(s, a) = Es′∼Psa

[
R(s, a, s ′) + F (s, a, s ′) + γmax

a′∈A

(
Q̂M′(s

′, a′)
)]

= Es′∼Psa

[
R ′(s, a, s ′) + γmax

a′∈A

(
Q̂M′(s

′, a′)
)]

This is the Bellman equation for M ′, so

Q̂M′ = Q∗M′ .

(In the undiscounted case, s = s0 has to be treated as a special case.)
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Corollary

Suppose F (s, a, s ′) = γΦ(s ′)− Φ(s) (and, if γ = 1, that
Φ(s0) = 0). Then, for all s, a:

Q∗M′(s, a) = Q∗M(s, a)− Φ(s) V ∗M′ = V ∗M(s)− Φ(s)

Remark

The identities above actually hold for any policy π:

Qπ
M′(s, a) = Qπ

M(s, a)− Φ(s) V π
M′ = V π

M(s)− Φ(s)

Therefore, potential-based shaping also preserves near-optimal
policies.

I Note that setting Φ(s) = V ∗M(s) would make V ∗M′ ≡ 0, which
would make learning easy.

I This suggests that a way to define a good potential function
might be to try to approximate V ∗M(s).
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MDP review

Reward shaping
To provide guidance, policies can be learned on an
MDP with a modified reward function, and then used
on the original MDP (with varying results).

Potential-based reward shaping
To ensure that good policies for a modified reward
function are also good for the original, it suffices to
base the rewards on a potential function.

Experiments
Some potential-based shaping functions are
evaluated.
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A grid world

I States: an n × n grid, with start state and (absorbing) goal
state in opposite corners.

I Actions: can attempt to move in any of the four cardinal
directions (N, S, E, W)

I Transition probabilities: attempting to move in a direction
succeeds with probability 0.8 and goes in a random direction
otherwise

I Discount factor: γ = 1 (no discounting)

I Reward function: -1 per step
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Finding a potential function to approximate V ∗M

I From most states, trying to move towards the goal could be
expected to make roughly 0.8 units of progress.

I Therefore, one estimate of the value function is

Φ0(s) = −manhattan(s,goal)/0.8

I The experiments try using Φ0 and 0.5Φ0 as potential
functions.
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no shaping

Φ = 0.5Φ0

Φ = Φ0

Graph from Figure 1(a) (with red labels added)
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no shaping

Φ = 0.5Φ0
Φ = Φ0

Graph from Figure 1(b) (with red labels added)
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Grid world with flags

I Extend the grid world so that numbered
flags have to be picked up in order.

I The state space is enlarged to keep
track of the flags picked up so far.

The agent (S) needs
to go to 1, 2, 3, 4, G
in order.1

1Image taken from Figure 2(a)
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Grid world with flags

An estimate of the value function is

Φ0(s) = −(5− n − 0.5)

5
t

where

I n is the number of subgoals that have
been accomplished in state s, and

I t is an estimate of the number of steps
needed to reach G directly.

Experiments were done with Φ0 and also a
function Φ1 which was a more fine-tuned
estimate.

The agent (S) needs
to go to 1, 2, 3, 4, G
in order.1

1Image taken from Figure 2(a)
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no shaping

Φ = Φ0

Φ = Φ1

Graph from Figure 2(b) (with red labels added)
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Conclusion

We’ve seen that

I Reward shaping can change what the optimal policy is.

I But, using potential-based shaping functions guarantees that
the optimal policy will not be changed.

I The idea of potential functions can help us find useful shaping
functions in practice.
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