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Outline

MDP review

Reward shaping
To provide guidance, policies can be learned on an
MDP with a modified reward function, and then used
on the original MDP (with varying results).

Potential-based reward shaping
To ensure that good policies for a modified reward
function are also good for the original, it suffices to
base the rewards on a potential function.
Experiments

Some potential-based shaping functions are
evaluated.
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MDP review

Definition
A Markov decision process (MDP) is a tuple
M= (S,A T,v,R) where

» S is a finite set of states,

» A={a1,...,ak} is a set of actions,

» T ={Ps;:s€S,ac A} specifies transition probabilities;
Psa(s") is the probability of transitioning from s to s” with
action a,

» ~ is the discount factor, and
» R:SxAxS — Ris the reward function.

Definition

A policy over a set of states S is a function 7 : S — A.



MDP review

Definition
Given a policy 7 and MDP M = (S, A, T, v, R), the value
function V[ is defined by

Vi(s) =E[Ri +YRo + v?Rs +...;7, 5]

where R; is the reward received on the ith step of following 7,
starting from s.

Definition
The Q-function is

Qu(s,a) = Egrp,[R(s,a,5") + 7 Vi(s)]
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MDP review

» The optimal value function is V}(s) = sup, V/;(s).
» The optimal Q-function is Qj,(s,a) = sup, Qf(s,a).

» The optimal policy is 7},(s) = argmax,c 4 Qy/(s, a).
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Regularity conditions for undiscounted MDPs

When the discount v is 1, we'll assume:
» There is an absorbing state sp s.t.

» sp can never be left once entered, and
» from sy, no further rewards can be gained.

» The transition probabilities T are proper: starting from any
state, following any policy will lead to sy with probability 1.
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Modifying the reward function to provide guidance

To learn a policy for an MDP
M = <S7 A? T?’Y? R>

we could instead run our reinforcement learning algorithm on a
transformed MDP
M, = <S7 A? T? 77 Rl>

where
RR=R+F

is the transformed reward function, and
F:SxAxS—R

is the shaping reward function.
When will an optimal (or good) policy for M’ also be optimal (or
good) for M?
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Difficulties in reward shaping
Consider this (undiscounted) problem:

= G N T

How can we modify the reward function to make the agent more
quickly learn to move rightward to the goal?
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Difficulties in reward shaping

Consider this (undiscounted) problem:

= oINS SN
GOAL
What if we give extra reward for going in the right direction?
oI KON ST

GOAL
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Difficulties in reward shaping

Consider this (undiscounted) problem:

S N G N N
GOAL

What if we give extra reward for going in the right direction?
oI KToION ST
GOAL

Problem: it's now better for the bicycle to try to go in a circle
than to go the goal.
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This problem isn’t just a contrived artificial example.

Consider this description of work on a (more complicated) bicycle
driving domain:
In our first experiments we rewarded the agent for driving
towards the goal but did not punish it for driving away from it.
Consequently the agent drove in circles with a radius of 20-50
meters around the starting point. Such behavior was actually
rewarded by the reinforcement function [...]
— Randlgv and Alstrgm (1998)
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Idea: use a potential function

Associate a potential value ®(s) to each state s, and add to the
reward of a transition the difference of potentials.

GOAL
-1-3
100

CD(Sl) =0 ¢(52) =3 ¢(53) =6 ¢(S4) =9 CD(S()) =
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Definition
A shaping reward function F : S x A x S — R is potential-based
if there exists ® : S — R s.t.

F(s,a,s") = v®(s") — &(s)
for all s # sp, a,s’.

Theorem

If F is a potential-based shaping function, then every optimal
policy in M = (S, A, T,~, R+ F) will also be an optimal policy in
M= (S,A, T,v,R) (and vice versa).
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Theorem

If F is a potential-based shaping function, then every optimal
policy in M = (S, A, T,~, R + F) will also be an optimal policy in
M= (S,A T,v,R) (and vice versa).

Q;(,, satisfies the Bellman equation:
Qu(s,a) = Egp, [R(s, a,s')+~ max Qum (s, a/)]
a'e
Let's subtract ®(s) from both sides:

Qu(s,a) — d(s) =Ey _p, |:R(s, a,s’) + v max Q,T/,(s/, a,):| — d(s)
sa aen
=, [R(s, 2.5) 4 90(") + 7 max Qs ) - ®<s’))} - o)

=Eyp, [R(s, 2,) 4 70(s") = 0(s) 3 max (Qs', ) - ¢(s’))}
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Theorem

If F is a potential-based shaping function, then every optimal
policy in M = (S, A, T,~, R+ F) will also be an optimal policy in
M= (S,A, T,v,R) (and vice versa).

So Qj/(s,a) — ®(s) is equal to

Evop, |R(5,2,5) +79(s) —~ 9(5) + 7 max (Qis(s', o) — &(s")
a'e
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Theorem

If F is a potential-based shaping function, then every optimal
policy in M = (S, A, T,~, R + F) will also be an optimal policy in
M = (S,A, T,v,R) (and vice versa).

So Qjy(s,a) — ®(s) is equal to
Eap | R(s.2.5) +79(5)) — 0(s) + Y max (Qis(s'. ) — 0(s))
a'e

Let
QM/(S, a) = Qu(s,a) — d(s).
and recall that
F(s,a,s") = y®(s') — d(s).

Therefore,

Qur(s,a) =Egp, [R(s7 a,s')+ F(s,a,s)+~ max (QM,(S/, a’))]
a'e

= ES/NPsa |:R/(S, a, 5/) + vy max (QM/(sla 3/)):|
a'eA
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Theorem

If F is a potential-based shaping function, then every optimal
policy in M = (S, A, T,~, R+ F) will also be an optimal policy in
M= (S,A, T,v,R) (and vice versa).

Qur(s,a) =Egp, [R(s, a,s')+ F(s,a,s)+~ max (@M,(s’, j))]
a'e
=FEgp, [R’(s, a,s’) + v max (QM/(S’, a’))}
a'eA
This is the Bellman equation for M’, so

Qm = Q-

(In the undiscounted case, s = sp has to be treated as a special case.)
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Corollary

Suppose F(s,a,s’) = yP(s’) — ®(s) (and, if v =1, that
®(sp) = 0). Then, for all s, a:

Qur(s;a) = Qu(s, a) — &(s) Vi = Viu(s) — @(s)

Remark

The identities above actually hold for any policy 7:
Qi (s,a) = Q(s,a) —(s) Vg = Vii(s) — &(s)

Therefore, potential-based shaping also preserves near-optimal
policies.

» Note that setting ®(s) = Vj;(s) would make V};, = 0, which
would make learning easy.

» This suggests that a way to define a good potential function
might be to try to approximate Vj(s).
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MDP review

Reward shaping
To provide guidance, policies can be learned on an
MDP with a modified reward function, and then used
on the original MDP (with varying results).

Potential-based reward shaping
To ensure that good policies for a modified reward
function are also good for the original, it suffices to
base the rewards on a potential function.
Experiments

Some potential-based shaping functions are
evaluated.
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A grid world

» States: an n X n grid, with start state and (absorbing) goal
state in opposite corners.

» Actions: can attempt to move in any of the four cardinal
directions (N, S, E, W)

» Transition probabilities: attempting to move in a direction
succeeds with probability 0.8 and goes in a random direction
otherwise

» Discount factor: v =1 (no discounting)

» Reward function: -1 per step
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Finding a potential function to approximate V),

» From most states, trying to move towards the goal could be
expected to make roughly 0.8 units of progress.

» Therefore, one estimate of the value function is
®y(s) = —MANHATTAN(S, GOAL)/0.8

» The experiments try using ®¢ and 0.5®¢ as potential
functions.
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10x10 Grid world
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Graph from Figure 1(a) (with red labels added)
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x10* 50x50 Grid world
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Grid world with flags

» Extend the grid world so that numbered
flags have to be picked up in order. 3 1

S 4

The agent (S) needs
togotol,23,4,G
in order.!

» The state space is enlarged to keep
track of the flags picked up so far.

!Image taken from Figure 2(a)
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Grid world with flags

An estimate of the value function is

_(5—n—0.5)t

q)o(s) = 5

where

» nis the number of subgoals that have
been accomplished in state s, and

» t is an estimate of the number of steps
needed to reach G directly.

Experiments were done with ®( and also a
function ®1 which was a more fine-tuned
estimate.

!Image taken from Figure 2(a)
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4

The agent (S) needs
togotol, 2 3 4G

in order.!

25 /28



5x5 Grid world with 5 flags/subgoals
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Graph from Figure 2(b) (with red labels added)
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Conclusion

We've seen that
» Reward shaping can change what the optimal policy is.

» But, using potential-based shaping functions guarantees that
the optimal policy will not be changed.

» The idea of potential functions can help us find useful shaping
functions in practice.
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